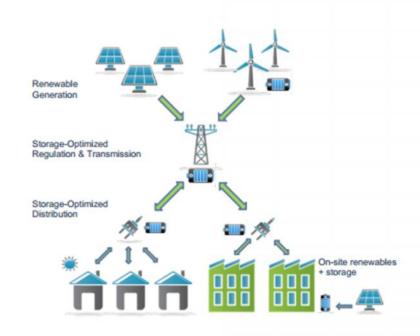

Energy storage enables greater overall system efficiency ... and a cleaner, smarter grid


Current Grid Infrastructure

- Built for load and generation peaks that occur only a few times per year
- > Massive fossil storage required

Future Grid Infrastructure

- Strategic buffers level generation and load, reducing Mura (unevenness) and Muri (overburden)¹
- > Result: more efficient & reliable electrical system

1. The approach is similar to Heijunka in the Toyota Production System, which levels production schedules in order to reduce overall waste

Energy Storage Is A Very Broad Asset Class

Technology Classes

Energy Storage Examples

Chemical Storage

Sodium Sulfur Battery

- Electrical energy is stored for later use in chemical form. Existing battery technologies are being improved, and new battery technologies are becoming available.
- Example: 34 MW Sodium Sulfur Battery 51 MW wind farm, Japan (NGK)

Thermal Storage

Ice Storage

- Air conditioners create ice at night, when power rates are low. This stored ice then runs a cooling system during the afternoon, when power costs are highest and the power grid is most stressed.
- •Example: 12 kW Thermal Storage Napa Community College (Ice Energy)

Mechanical Storage

High Speed Flywheel

- Flywheels convert electrical energy to kinetic energy, then back again very rapidly. Flywheels are ideal for power conditioning and short-term storage.
- Example: 3 MW Mechanical Storage for Ancillary Services NE ISO (Beacon Power)

Bulk Mechanical Storage

Below Ground Compressed Air

- Electricity is used to compress air into small or large modular storage tanks or a large underground cavern.
 The compressed air is used to spin turbines when electricity is needed.
- •Example: 115 MW Compressed Air Energy Storage McIntosh, Alabama

Bulk Gravitational Storage

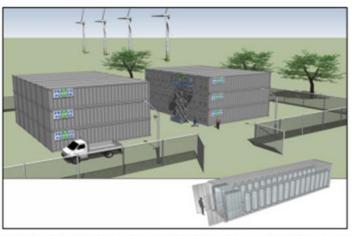
Pumped Hydro

- Excess electricity is used to pump water uphill into a reservoir. When power is needed, the water can run
 down through turbines, much like a traditional hydroelectric dam.
- •Example: 1,532 MW Pumped Hydro TVA's Raccoon Mountain

Energy Storage Enables Multiple Value Streams

If the full range of benefits were considered, energy storage would be cost effective in many applications today

+ **System Operator** Customer Utility Society · Reduced energy and Load leveling Ancillary services More renewables demand costs T&D relief / deferral Fewer emissions Grid integration Emergency back up Improved power Improved grid Healthier climate Demand response quality reliability & security More jobs Improved reliability Reduce peak gen. and spinning reserve needs


Examples of Advanced Energy Storage Projects:

12 kW Thermal Storage - Napa Community College (Ice Energy)

3 MW Mechanical Storage for A/S - NE ISO (Beacon Power)

25 MW Flow Battery for Peaking & Wind Firming - MID (Primus Power)

1MW Lithium Titanate Battery for A/S-PJM (Altairnano)

Examples of Advanced Energy Storage Projects:

5 MW Thermal Storage - LA Community College (Calmac)

1 MWh Battery in Maui, Hi (Xtreme Power)

115 MW Compressed Air Energy Storage

2 MW Li-Ion Battery for A/S - AES (A123)

